

Available online at www.sciencedirect.com

Tetrahedron Letters

Tetrahedron Letters 47 (2006) 7011-7015

Oxidative-substitution reactions of polycyclic aromatic hydrocarbons with iodine(III) sulfonate reagents

Gerald F. Koser,^{a,*} Sanjay Telu^a and Kenneth K. Laali^b

^aDepartment of Chemistry, The University of Akron, Akron, OH 44325-3601, USA ^bDepartment of Chemistry, Kent State University, Kent, OH 44242, USA

Received 30 June 2006; revised 17 July 2006; accepted 21 July 2006

Abstract—Polycyclic aromatic hydrocarbons (PAH) undergo regioselective oxidative-substitution reactions with iodine(III) sulfonate reagents in dichloromethane to give the corresponding aryl sulfonate esters. The use of [hydroxy(tosyloxy)iodo]benzene in conjunction with trimethylsilyl isothiocyanate leads to thiocyanation of the PAH nucleus. © 2006 Elsevier Ltd. All rights reserved.

The capacity of phenyliodine(III) bis(trifluoroacetate), PIFA, to promote oxidative-substitution and oxidativecoupling reactions of electron-rich aromatic compounds through arene radical–cation intermediates has been amply demonstrated over the past 15 years. For example, PIFA oxidations of aromatic ethers in $(CF_3)_2$ -CHOH permit the introduction of selected nucleophiles into the aromatic nucleus; Eq. 1.^{1–4} The nature of the solvent is crucial to the success of these two-electron oxidation–reduction reactions. It has been shown, for example, that the use of CH_2Cl_2 instead of $(CF_3)_2CHOH$ reduces the yields of nuclear substitution products to trace levels or less.^{2,4}

The treatment of PIFA with $Et_2O \cdot BF_3$ affords a more reactive iodine(III) species, and, in this case, CH_2Cl_2 is the solvent of choice. These conditions have been employed for nuclear azidations of naphthalene and polymethylbenzenes with Me_3SiN_3 ,¹ nuclear cyanations of thiophenes, pyrroles, and indoles with Me_3SiCN ,⁵ and heterocyclizations of aromatic ethers containing alkylsulfanyl sidechains.⁶ When nucleophiles are not available, oxidative-coupling occurs. Hence, thiophenes,^{7,8} polyalkylbenzenes,⁹ and aromatic ethers¹⁰ are converted to biaryl products with BF₃—activated PIFA in CH₂Cl₂. Intramolecular coupling reactions of this type provide access to various benzo-annulated heterocyclic compounds.¹¹

We know of one reported example of aryl trifluoroacetate formation during PIFA oxidations of aromatic compounds; namely, EPR observation of the 9-trifluoroacetoxyanthracene radical–cation when anthracene was treated with PIFA in trifluoroacetic acid at -11 °C.¹² Other polycyclic aromatic hydrocarbons such as pyrene, perylene, pentacene, and 9,10-dimethylanthracene gave unsubstituted radical–cations (ArH⁺⁺) under the same conditions.¹²

In contrast to PIFA, the use of iodine(III) sulfonate reagents, $ArI(OH)OSO_2R$, for nuclear oxidations of aromatic substrates has been little explored. Indeed, whereas benzene and toluene are unreactive with PhI(O-H)OTs, electron-rich aromatics (e.g., anisole, thiophenes, trimethylsilylarenes, and trimethylsilylfurans) undergo electrophilic substitution reactions with ArI-(OH)OTs, leading to iodonium salts $Ar(Ar')I^+$ OTs.¹³

We now report that iodine(III) sulfonates undergo direct oxidative-substitution reactions with polycyclic

^{*} Corresponding author. Tel.: +1 330 972 6066; fax: +1 330 972 7370; e-mail: koser@uakron.edu

^{0040-4039/\$ -} see front matter @ 2006 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2006.07.114

aromatic hydrocarbons. This was discovered when an attempt to phenyliodinate 2,7-di-*tert*-butylpyrene (1, 2,7-DTBP) with [hydroxy(tosyloxy)iodo]benzene (2a, HTIB) gave 1-tosyloxy-2,7-di-*tert*-butylpyrene (3a) instead. Similar treatment of 2,7-di-*tert*-butylpyrene with the phenyl λ^3 -iodanes 2b–2d, containing mesylate (OMs), (+)-10-camphorsulfonate (OCs), and 2,4-dinitrobenzenesulfonate (ODNs) ligands, led regioselectively to the 1-sulfonyloxy-2,7-DTBP derivatives 3b–3d shown in Eq. 2 and Table 1. These reactions proceed readily in CH₂Cl₂ at room temperature and do not require activation of the iodine(III) reagent.

The structures of **3a–d**, including the location of the sulfonate group, are clearly evident by ¹H and ¹³C NMR analysis. For example, in addition to two *tert*-butyl singlets (δ 1.59 and 1.73) and one methyl singlet (δ 3.43) in the aliphatic region, the ¹H spectrum (300 MHz, CDCl₃) of **3b** features a 2H AB multiplet at δ 8.02 (H-4 and H-5), 1H doublets at δ 8.13 (J = 9.3 Hz, H-9) and δ 8.48 (J = 9.5 Hz, H-10), a 2H 'singlet' at δ 8.23 (H-6 and H-8) and a 1H singlet at δ 8.28 (H-3).¹⁵ Furthermore, the structures of the tosylate,¹⁶ mesylate,¹⁷ and camphorsulfonate¹⁶ analogs were established unequivocally by single crystal X-ray analysis.

The yields of **3a–d** (and all other oxidative-substitution products) reported herein are based on chromatographically isolated compounds, sometimes after further purification by recrystallization. For example, in one experiment, a mixture of 2,7-DTBP (0.315 g, 1.0 mmol) and **2a** (0.432 g, 1.1 mmol) in CH₂Cl₂ (20 mL) was stirred magnetically under N₂ for 45 min at room temperature. After aqueous workup (H₂O; 5% NaHCO₃; MgSO₄) and solvent removal, a red oil (0.72 g) containing PhI was obtained. Column chromatography of the oil on silica gel with 10–25% CH₂Cl₂ in hexanes gave a pale-yellow solid (0.371 g). Recrystallization of this material from methanol returned 1-tosyloxy-2,7-DTBP as a white solid; yield, 0.329 g (68%); mp 175.5–176.5 °C.

Table 1. Reactions of 2,7-di-*tert*-butylpyrene with iodine(III) sulfonate reagents in CH₂Cl₂ at rt

Reactants ^a (mmol)	CH ₂ Cl ₂ (mL), time (h)	OSO ₂ R	Product, yield ^b (%)
1 (1.0), 2a (1.2)	20, 24	OTs	3a , 82 ^c
1 (1.0), 2a (1.1)	20, 0.75	OTs	3a , 68
1 (1.0), 2a (1.1)	15, 0.5	OTs	3a , 65
1 (1.0), 2b (1.2)	15, 17	OMs	3b , 64 ^d
1 (0.64), 2b (0.70)	15, 1.7	OMs	3b , 63
1 (0.65), 2c (0.72)	15, 17	OCs	3c , 67 ^e (77)
1 (0.64), 2c (0.70)	20, 1.5	OCs	3c , 50 (59)
1 (1.0), 2d (1.2)	30, 3	ODNs	3d , 73 ^f

^a Rounded-off to two significant figures.

- ^b Isolated yields; The yields in parentheses are corrected for recovered hydrocarbon.
- $^{\rm c}$ Anal. Calcd for C_{31}H_{32}O_3S: C, 76.82; H, 6.66; found: C, 76.47; H, 6.71; 14 mp 180–181 °C.
- d Anal. Calcd for C_{25}H_{28}O_3S: C, 73.50; H, 6.91; found: C, 73.08; H, 6.93; mp 209–211 $^\circ C.$
- $^{\rm e}$ Anal. Calcd for C_{34}H_{40}O_4S: C, 74.96; H, 7.40; found: C, 74.90; H, 7.33; mp 146–150 °C.

^f Mp 184–186 °C (dec).

The starting concentrations of 2,7-DTBP in the foregoing experiments ranged from about 0.03 to 0.07 M and provided good yields of the oxidative-substitution products. However, when 2a was added to a 0.05 M solution of parent pyrene in CH₂Cl₂, *p*-toluenesulfonic acid and a highly insoluble olive-green solid co-precipitated. Treatment of the mixture with acetone (under reflux) allowed separation of the individual components in 78% (TsOH. H_2O) and 75% (by mass) yields, respectively. The insoluble solid did not melt at temperatures up to 300 °C and, based on comparison of its solid-state ¹³C NMR spectrum with that of pyrene,¹⁸ appears to be a mixture of pyrene oligomers. Column chromatography (silica gel; hexanes, 5-10% EtOAc-hexanes) of the oil recovered from the filtrate gave 1-tosyloxypyrene in 7% yield. When 2a was allowed to react with a more dilute solution of pyrene ($C_0 = 3.3 \times 10^{-3}$ M), the oligomeric material was still produced, but in this case, 1tosyloxypyrene was isolated in 21% yield (Eq. 3) and identified by single crystal X-ray analysis.¹⁶

Whether oxidative-substitution reactions of this type extend to other polycyclic ring systems was tested by the treatment of anthracene, phenanthrene, and perylene with selected iodine(III) sulfonate reagents in CH_2Cl_2 . In these exploratory studies, starting concentrations of the substrates were in the range 0.02–0.10 M and dilution effects were not examined. As shown in Table 2, all three hydrocarbons were converted regioselectively to the indicated sulfonate derivatives, although the yields of the 9-anthryl sulfonates were limited by the

Table 2.	Reactions of	anthracene	phenanthrene	and per	rvlene wit	th iodine(ΠD	sulfonate	reagents i	n CH	Cla	at rf
I abit La	reactions of	antinacone.	phonantin one,	and pe		in rounie	111/	Sunonate	reagents i	n ch	\mathcal{O}	ut 11

Reactants ^a (mmol)	CH ₂ Cl ₂ (mL), time	Product, yield ^b (%)
, 2a (1.0) (1.2)	20, 0.75 h	$\begin{array}{c} 0 \text{Ts} \\ 0 \text{Ts} \\ 21.5 \end{array} \qquad \begin{pmatrix} 0 \\ H \\ H \\ 43.5 \end{pmatrix}_2$
(1.0) (1.2)	50, 3 h	$\begin{array}{c} \underset{M}{\overset{OMs}{\overset{d}{\leftarrow}}} \\ 33 \end{array} \qquad \begin{pmatrix} \underset{H}{\overset{V}{\overset{V}}} \\ 24 \end{pmatrix}^{2} \\ 24 \end{array}$
(1.0) (1.2)	25, ca. 4 d	OTs ^e 60 (66)
(1.0) (1.2)	25, 4 d	OMs ^f 54 (62)
(1.0) (1.2)	10, ca. 5 d	OCs ⁹ 41 (55)
, 2a (0.50) (0.60)	10, 1 h	TsO

^a Rounded-off to two significant figures.

^b Isolated yields; The yields in parentheses are corrected for recovered hydrocarbon.

° Mp 164–166 °C.

- ^d Anal. Calcd for C₁₅H₁₂O₃S: C, 66.16; H, 4.44; found: C, 66.13; H, 4.58; mp 176–177 °C.
- ^e Anal. Calcd for C₂₁H₁₆O₃S: C, 72.39; H, 4.63; found: C, 72.33; H, 4.64; mp 155–156 °C.
- $^{\rm f}$ Anal. Calcd for C_{15}H_{12}O_3S: C, 66.16; H, 4.44; found: C, 66.30; H, 4.52; mp 111–112 °C.
- ^g Mp 99.5–101 °C.
- ^h Mp 200–202 °C (dec).

competing formation of bianthronyl. Phenanthrene reacts more slowly with **2** than the other ring systems, but this had little or no effect on product yields. Finally, in addition to NMR (¹H, ¹³C) characterization of the sulfonate products shown in Table 2, single crystal X-ray structures of the tosylate derivative of perylene and the mesylate derivatives of anthracene and phenanthrene were determined.¹⁶

The possibility that iodine(III) sulfonate reagents might be employed without activation in CH_2Cl_2 for the introduction of external nucleophiles into polycyclic aromatic hydrocarbons was demonstrated by the conversion of anthracene, perylene, and 2,7-DTBP to the thiocyanato derivatives shown in Table 3. This was accomplished by treatment of the hydrocarbons with 2a (HTIB) in the presence of a 5-fold excess of trimethylsilyl isothiocyanate. In view of significant bianthronyl production during direct reactions of anthracene with 2aand **b**, the high yield of 9-thiocyanatoanthracene when Me₃SiNCS is available is noteworthy. However, a similar attempt to prepare the thiocyanate derivative of phenanthrene was unsuccessful.

We finally report that PIFA reacts with 2,7-DTBP in CH₂Cl₂ to give the trifluoroacetate derivative shown in Table 3, the structure of which was verified by single crystal X-ray analysis.¹⁷ A mechanism for the oxysulf-onylation of polycyclic aromatic hydrocarbons with iodine(III) sulfonate reagents has not yet been

^a Rounded-off to two significant figures.

^b Isolated yields; The yields in parentheses are corrected for recovered hydrocarbon.

^c 1.5 h at 0 °C, overnight at rt.

^d Anal. Calcd for C₁₅H₉NS: C, 76.56; H, 3.86; found: C, 76.26; H, 4.05; mp 182.5–184 °C.

^eHRMS Calcd for C₂₁H₁₁NS+Na: 332.0510; found: 332.0504; mp 180.5–182 °C.

^f 0.5 h at 0 °C, 24 h at rt.

^gAnal. Calcd for C₂₅H₂₅NS: C, 80.82; H, 6.78; found: C, 80.92; H, 7.11; mp 118–120 °C.

^h Anal. Calcd for C₂₆H₂₅F₃O₂: C, 73.22; H, 5.91; found: C, 72.86; H, 5.88; mp 123–126 °C.

Scheme 1.

established. However, based on analogy with PIFA, the radical-cation mechanism shown in Scheme 1 seems plausible, and is suggested as a preliminary model.

References and notes

- Kita, Y.; Tohma, H.; Inagaki, M.; Hatanaka, K.; Yakura, T. *Tetrahedron Lett.* **1991**, *32*, 4321–4324.
- Kita, Y.; Tohma, H.; Hatanaka, K.; Takada, T.; Fujita, S.; Mitoh, S.; Sakurai, H.; Oka, S. J. Am. Chem. Soc. 1994, 116, 3684–3691.
- 3. Kita, Y.; Takada, T.; Mihara, S.; Tohma, H. *Synlett* **1995**, 211–212.

- Kita, Y.; Takada, T.; Mihara, S.; Whelan, B. A.; Tohma, H. J. Org. Chem. 1995, 60, 7144–7148.
- 5. Dohi, T.; Morimoto, K.; Kiyono, Y.; Tohma, H.; Kita, Y. *Org. Lett.* **2005**, *7*, 537–540.
- Kita, Y.; Egi, M.; Ohtsubo, M.; Saiki, T.; Takada, T.; Tohma, H. Chem. Commun. 1996, 2225–2226.
- Tohma, H.; Iwata, M.; Maegawa, T.; Kiyono, Y.; Maruyama, A.; Kita, Y. Org. Biomol. Chem. 2003, 1, 1647–1649.
- 8. Dohi, T.; Morimoto, K.; Kiyono, Y.; Maruyama, A.; Tohma, H.; Kita, Y. *Chem. Commun.* **2005**, 2930–2932.
- Tohma, H.; Iwata, M.; Maegawa, T.; Kita, Y. *Tetrahedron* Lett. 2002, 43, 9241–9244.
- Tohma, H.; Morioka, H.; Takizawa, S.; Arisawa, M.; Kita, Y. *Tetrahedron* 2001, *57*, 345–352.

- 11. Koser, G. F. *Adv. Heterocycl. Chem.* **2004**, *86*, 225–292, See pp 244–250 and references cited therein.
- 12. Eberson, L.; Hartshorn, M. P.; Persson, O. Acta Chem. Scand. 1995, 49, 640–644.
- 13. Moriarty, R. M.; Vaid, R. K.; Koser, G. F. *Synlett* **1990**, 365–383, See pp 378–379 and references cited therein.
- The elemental analyses reported herein were performed by Galbraith Laboratories, Inc., Knoxville, TN; Microanalysis Laboratory, University of Illinois, Urbana, IL; or Midwest Microlab, LLC, Indianapolis, IN.
- 15. The proton assignments are based on analysis of the COSY and NOESY spectra of **3b**. The spectra were recorded by Silapong Baiagern at The University of Akron on a 400 MHz Spectrometer (Inova 400).
- 16. Semih Durmus and Wiley J. Youngs; The University of Akron, unpublished results.
- 17. Jered C. Garrison and Wiley J. Youngs; The University of Akron, unpublished results.
- The solid-state ¹³C NMR spectra were recorded by Todd A. Wagler at The University of Akron.